MCB

Summary Version
1.0

Purpose of Benchmark

Study MPI+0OpenMP parallel scaling efficiency, including the performance trade-off
for switching between MPI processes and OpenMP threads. Verify C++ compiler
support for OpenMP and templates. Evaluate performance for integer computations.

Characteristics of Benchmark

MCB is a Monte Carlo particle transport benchmark. As with any Monte Carlo
benchmark, the number of branch mis-predictions will be higher than in a pure
number crunching application. Some of the computation in MCB is performed using
integer arithmetic to avoid issues associated with round-off of floating point
numbers. Compilers are unlikely to find SIMDizable loops in the current version of
MCB.

This benchmark uses both MPI and OpenMP to deliver high levels of parallelism.
ASC applications often simulate many kinds of physics in a single run. This leads to
large memory usage per process. The amount of memory per core is dropping,
below the size of a process, so it is crucial that ASC can effectively use multiple
threads within a single MPI process. On a system that is well suited to ASC
workloads, MCB will exhibit little fall-off in performance between a pure MPI run
and a run with 8 or more threads per process.

MCB requires a minimum of 1GB of main memory per MPI task.
Mechanics of Building MCB

The mcb directory contains a README file giving fairly detailed information on
building and running MCB. This section gives a brief explanation on how to get MCB
up and running on a new platform.

Create a build script and modify a Makefile to reflect the characteristics of your
system. Samples named build-linux-x86 64.shandMakefile-linux-

x86_ 64 for systems running ASC’s variant of Red Hat Enterprise Linux 6 and
build-bgg.shand Makefile-bgq for IBM Blue Gene/Q systems have been
provided in the mcb directory. The flags that most often change for a new system or



compiler are CXX, CXXFLAGS, OPENMPFLAG, and MPI INCLUDE. The meanings
of these flags should be self-explanatory.

[t should be easy to build MCB for an x86_64 cluster or a Blue Gene system. Building
MCB for an Intel Xeon Phi system should also be easy if it runs in "native mode" on
the accelerator board.

Code modifications will be required on systems using Nvidia boards or other
hardware that does not support OpenMP. The changes will be sufficiently extensive
that they cannot be described in this document.

Mechanics of Running MCB

MCB is a proxy app for ASC multi-physics simulation codes that require at least 1 GB
of memory per MPI process. MCB runs used in CORAL bids should limit the number
of MPI processes to no more than the number of GB of memory in the node, even if
the MCB benchmark doesn’t require that much memory per MPI process.

The mcb/run-decks directory contains scripts to run a variety of problems. The
scripts with names of the formM mcb coral ...cshareintended for use with
the Moab batch system (or the SLURM sbatch command) and the srun job
launcher from SLURM. You will need to modify them if your system does not use
Moab and srun.

To verify that MCB gives correct answers, runthe M mcb coral BGQ val.csh
script (modified for your system). The value printed at the end of the run for "MC
max error” is 0.0025 for 32 nodes of a BGQ system with a total of 10240000
particles. The error should scale roughly like 1/sqrt(numParticles) when run with
2-50 million particles.

sbatch -p pdebug --nodes=32 --ntasks=128 --time=30:00
./M mcb coral BGQ val.csh

The scripts assume 16 cores per node and run 1, 2, 4, 8, and 16 processes per node
to evaluate the trade-off between MPI processes and OpenMP threads. Evaluating
the performance changes that occur when switching between MPI processes and
OpenMP threads is one of the key goals of the MCB runs. If a node has 57 cores, it
will be hard to trade threads for processes. In this case it would be best to only use
56 cores because 56 has enough small prime factors that several different process-
by-thread combinations can be tried.

Once MCB runs correctly, you can run a weak scaling study to check for scaling
issues.M mcb coral BGQ 4ht lo.cshand

M mcb coral x86 lht lo.csh canbe run with any number of nodes and will
automatically change the number of particles and the spatial decomposition to make



implement weak scaling. The BGQ script uses 4 hardware threads per core while the
x86 script uses 1 hardware thread per core. The weak scaling study assigns a fixed
amount of work per core, not per hardware thread. The scripts assume that

PROCS PER_NODE evenly divides the number of cores per node. It will be
necessary to modify CORES PER_NODE and THREADS PER_CORE in the batch
script for systems other than a BGQ. NUM_NODES can be set manually if the system
does not use SLURM.

The MCB problems that will be run to generate a CORAL response use several
command line arguments to “nail down” the problem size. Changing the number of
cores does NOT change the amount of work. The CORAL baseline Figure of Merit
problem can be run by typing:

sbatch -p pbatch --nodes=4096 --ntasks=65536 --time=30:00
./M_mcb seq base.csh

The MCB run requested in CORAL responses (CORAL class problem) uses twice as
many zones and twice as many particles as the baseline problem. This CORAL class
problem can be run by typing:

sbatch -p pbatch --nodes=4096 --ntasks=65536 --time=30:00
./M_mcb coral 2xseq.csh

Reporting Results

MCB prints a FOM near the end of each run. The FOM is proportional to the total
number of particles tracked per second. In the absence of parallel overhead, the
FOM will scale linearly with the number of cores used. The FOM, the number of
nodes, the total number of MPI processes, the number of OpenMP threads per
process, and the total number of particles (the numParticles value printed near the
start of the run) should be reported.

MCB includes a validation test whose answer can be compared to an analytic
diffusion problem. The value for "MC max error" from the validation run should be
reported along with the number of nodes, total number of MPI processes, the
number of OpenMP threads per process, and the total number of particles.

The README file provides more details on building and running MCB.



